
Theor Chim Acta (1991) 80:387-405 Theoretica 
Chimica Acta 
© Springcr-Verlag 1991 

Recursive intermediate factorization 
and complete computational linearization 
of the coupled-cluster single, double, triple, 
and quadruple excitation equations* 

Stanislaw A. Kucharski** and Rodney J. Bartlett 
Quantum Theory Project, University of Florida, Departments of Chemistry and Physics, 
Gainesville, FL 32611, USA 

Received March 9, 199-1; received in revised form May 6, 1991/Accepted May 6, 1991 

Summary. The nonlinear CCSDTQ equations are written in a fully linearized 
form, via the introduction of computationally convenient intermediates. 
An efficient formulation of the coupled cluster method is proposed. Due 
to a recursive method for the calculation of intermediates, all computa- 
tional steps involve the multiplication o f  an intermediate with a T vertex. This 
property makes it possible to express the CC equations exclusively in terms of 
matrix products which can be directly transformed into a highly vectorized 
program. 
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1. Introduction 

The main advantage of the coupled cluster (CC) method [1, 2] over the CI 
approach for electron correlation, relies on the fact that it offers an attractive 
truncation scheme. It is well known that the full CC method and the full CI 
approach both provide exact ( size) -extensive results. Since neither method in its 
full expansion is suitable for calculations of real chemical systems, simplifications 
are requisite. The truncation scheme in the CC approach does not violate 
extensivity and in addition it generates a method for including higher excitations 
at much lower cost than in the corresponding CI model. 

After applications by Paldus, Ci~ek, and Shavitt [3], the general ab initio 
application of the CC method to the evaluation of the molecular correlation 
energy began with an implementation by Bartlett and Purvis [4] and indepen- 
dently by Pople et al. [5] of the CCD model in 1978. From that time the CC 
method underwent a substantial development. The obvious direction for the 
improvement of the CCD model was the inclusion of other connected cluster 
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operators. Adding the single excitations defines CCSD, first formulated and 
implemented by Purvis and Bartlett [6]. Although terms were gathered into 
natural intermediates, the very large number of terms in CCSD compared to 
CCD made the coding comparatively difficult. 

The inclusion of triple excitation clusters [3] was performed in several 
stages, starting with the CCSDT-1 method [7], through several inter- 
mediate and noniterative CCSD+T(CCSD) steps [8,9] until ending with 
the full inclusion of triples which creates the method, CCSDT [10]. The 
latter method, along with many of its less time consuming approximations 
[7-9], proved to be able to provide highly accurate correlated results. The 
next obvious step was to include connected quadruple excitations, i.e. T4, 
which has been done at the CCSDTQ-1 [11], CCSDT+Q(CCSDT) [11], 
and CCSD+TQ*(CCSD) [12] levels, all of which are correct through fifth 
order. 

From the computational point of view, the basic characteristic of each 
approximation is how the calculation scales with the number of basis functions 
occupied, n, and excited, N. The CCD method scales as n2N 4, the inclusion of 
singles does not change this since the new diagrams require no higher than an 
n2N 3 scheme. Inclusion of T 3 clusters increases the scaling factor by 1 or 2 
depending upon the types of diagrams included. Those which do not contain 
the T3 into 7"3 contribution - obtained via the two-body interaction - scale as 
n 3N4 and the others as n 3N5. An analogous situation occurs in the T4 equation. 
All the terms which do not include T4 into T4 contributions scale as naN 5 while 
the others scale as n a N  6. 

An attractive feature of the CC method is the possibility of diagram 
factorization [13], i.e., a procedure which allows one to compute a contribution 
from terms in a piece-wise manner. This feature is intrinsic to CC calculations. 
It is due to this fact that the CCD method scales computationally as n2N 4 
although the diagrams of quadruple type contain eight lines and when not 
factorized would require a n  n4N 4 scheme. The factorization of diagrams result- 
ing directly from an exponential expansion of the CC wave function is, in fact, 
the key feature of the CC method. This determines the computational efficiency 
of a CC program, and provides important advantages compared to analogous 
CI approaches, in addition to CC methods' extensivity. Obviously both meth- 
ods tend to converge with the inclusion of higher rank clusters. The lowest 
order difference between CISD and CCSD results occurs in the fourth-order 
quadruple contribution, E4 Q, whereas for CCSDTQ and CISDTQ, the lowest- 
order corrections neglected by CI are sixth-order pentuples and hextuples. 
CCSDTQ is correct through sixth order, while CISDTQ is only correct through 
fifth. 

The aim of the present paper is to demonstrate a factorization of all 
diagrammatic terms occurring in the CCSDTQ method in such a way that 
the final equations contain only linear terms. This requires suitably defined 
intermediates, such that all multiple T vertices will be absorbed into them. 
In addition, the intermediates themselves will be constructed in a recursive 
manner, i.e., each diagram contributing to the intermediate is also linear in 
T. It can be observed that the intermediates introduced in the process of 
factorization of the CC equations are those which appear in the expansion of 
suitably defined effective hamiltonians. The definition and the diagrammatic 
expansion of the effective hamiltonian will be briefly discussed in the next 
section. 
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2. Effective hamiltonian 

When the hamiltonian, 

H = ~ ~ L q  {Ptq} + 1 ~. (pq II rs>{p*q *sr } = FN "4- W N 

p ,q  p ,q ,r ,s  

of a system is subjected to a similarity transformation: 

1~ = U - ' H U  (1) 

the resulting opera tor /7  is an effective hamiltonian, [14]. The/~,  obtained in Eq. 
(1), is defined in the full functional space M. Usually the transformation of Eq. 
(1) is designedin such a way that the eigenvalues of H can be obtained by 
diagonalizing H in some smaller subspace of M, called a model or active space 
and defined by a projector P. In this manner we arrive at the more familiar 
definition of the effective hamiltonian employed in multi-reference theories: 

H e # =  P17P (2) 

In the present case we are going to use the effective hamiltonian defined in 
the more general way according to Eq. (1), but with a precisely defined operator 
U. We assume that U is approximated by the coupled cluster ansatz, i.e., our 
effective hamiltonian H is expressed as: 

I7 = e - r i l e  r =  (HeT)c (3a) 

where T is the usual connected cluster operator: 
N 

T = ~ T,. (3b) 
m 

and 

Tm=(m[) -e ~ t~'b'{atbty... . . . j k i }  (3c) 
a b c . . .  
i jk  . . . 

The H operator is a quantity of interest for several reasons. Due to the 
Hausdorff formula, H can be expanded in terms of commutators only, which is 
equivalent to its expansion in terms of connected diagrams as in Eq. (3a). This 
means that f i  is represented by finite sets of diagrams. Usually the T operator is 
truncated at a certain level of excitation, and this corresponds to the analogous 
truncation in the expansion of H. 

The other reason for/-7 being worth attention is the fact that it is a quantity 
that occurs in various computational schemes based upon the cluster expansion 
of the wave function. 

In the treatment of one-electron properties [15, 16] including analytical 
gradients, the linear response of T amplitudes, T ~, to a perturbation character- 
ized by 2H ~, is obtained by solving the following equations: 

( ~ b .  ]H;" + [/1, T~]]~> = 0 (4) 

where the effective perturbation/t~ is expressed as: 

17 ~ = e - rH~e r (5) 

In the equation-of-motion approach to the coupled cluster excitation energy 
[15, 17-19] we arrive at a commutator equation of the form: 

[H, f2~][~> = ~kf2k* 14~) (6) 
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where t2 t is an excitation operator. Again the first step in the solution of Eq. (6) 
is the construction of t h e / 7  operator [18]. 

A similar procedure is employed in the multi-reference coupled cluster theory 
based upon the Fock space ansatz [20-23]. The equation for the n-particle, 
m-hole sector of Fock space can be generally written as- 

Q(",m)( I4~ - O I ~ e f f ) P  (n'm) = 0 (7 )  

where f] is a normal-ordered exponential operator (see [22] for details). Again, 
the solution of the equation depends on the prior evaluation of /7 .  In the next 
sections we are going to analyze the structure o f /7  and then describe its recursive 
construction to demonstrate how the intermediates contributing to /4 can be 
exploited in the regular coupled cluster equations. 

3. Structure o f / t  

As was already mentioned H is expressed in terms of connected diagrams only. 
In order to construct the H diagrams we contract the Hamiltonian, H, with a 
number of T operators appearing in the e r expansion. Since H contains at most 
four second quantized operators, it can be contracted to at most four T clusters 
(two in the case of the one-body component of H). If  it is contracted to less, 
then the diagram can have some annihilation lines. Obviously, the diagram 
containing k annihilators, can be connected with at most 4 - k T clusters (2 - k 
in the case of the one-body component). This means, e.g., that the contribution 
of R containing four annihilation lines represents just an element of H, and that 
containing three annihilation lines can be connected with 0 or 1 T cluster, etc. 
We can classify the R components into five different classes, having 0 to 4 
annihilation lines: 

where the / tk  represents all diagrams containing k annihilation lines. On the other 
hand, within each class we may separate/4 into contributions, distinguished by 
the superscript, engaging different numbers of excitations. Thus we may write: 

ak  ~- Z R~ (9) 
i 

where i corresponds to the number of created quasi-particles, i.e., holes or true 
particles. In other words, i denotes the number of lines above the interaction line 
in an R diagram. 

In general H is finite, but it can contain clusters up to N-fold excitations. 
Since the total number of particles in the system is constant, i.e., we do not allow 
for ionization processes, the summation ¢ • Jr i in Eq. (9) runs over a subset of 
integers for which i + k is even. The (i -r k)/2 = l in this context would corre- 
spond to the /-body component, //(l),  of the effective hamiltonian. It follows 
immediately that to the 0-body part only H ° contributes, i.e.: 

H(0) =/7o ° (10) 

Analogously we have: 
H(1) -2 -I = Ho + H1 + / / o  (11) 
//(2) = / / 4  + / / 3  + / / 2  + Hi  +/7o  

and similar expressions for the higher-body components. 
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4. CC method with inclusion of single, double, triple and quadruple excitations 

The inclusion of the higher rank equations into a given CC model is relatively 
straightforward from the conceptual point of view. Within the current model the 
wave function is represented as: 

= e r~  (12) 

where T = T~ + T2 + T3 + T4 and T m is defined in Eq. (3b). 
The respective sets of equations are obtained by the projection of the 

Schroedinger equation 

e -rHerrl) = E4) (13) 

on to the subsets of singly, doubly, triply and quadruply excited configurations, 
which lead to the following set of equations: 

01T~ = (F N --}- FNT 1 ~- FNT 2 + WNT 1 ~- W N T  2 --}- W N T  3 

3 l + FNT2/2 + WNT2/2 + WNT 1T 2 + WNT]/3.)c  (14a) 

D2T2 = (WN -]- FNT2 + FNT3 + WNT] + WNT2 -F- WNT 3 + WNT 4 

+ FNT ] r 2 + WNT2/2 + WNT 1 r 2 -t- WNT 1 r 3 -~- WNT2/2 

+ WNT3/3! + WNT2T2/2 + WuT4/4!)c (14b) 

O3T 3 =(FNT3-~- FNT4-+- WNT2 + WNT3 + WNT4 + FNT1T3-I- FNT2/2-[ - WNTIT 2 

-]- WN TI T3 + WN T] T4 + WN T2 /2 + WN T2 T3 -I- WN T2 T2/2 

+ WNT1 T2/2 + WN T2 T3/2 + WN T 3 T2/3!)c (14c) 

D4T4=(FNT4 + WNT3 ~- WNT4 ~- FNTIT4 + FNTzT3-~ WNT1T3-t- WNT2/2 

+ WNT 1 T 4 + WNT2/2 -[- WNT2T 3 -I- WNT2T4 + WNT2T3/2 

3 ! + WNTI T2/2 --~ WNT2T4/2 --}- WNT2/3. -Jr- WNT 1 T2T3 

+ WNT 3 T3/3! + WNT~ T]14)c (14d) 

where projection on the right of Eq. (14) by the Fermi vacuum [0) is under- 
stood, as is projection on the left by single (14a), double (14b), triple (14c) and 
quadruple excitations (14d), respectively. Also, the diagonal part of FNT . has 
been taken to the left side of Eq. (14) in each case as 
D , T ,  = ( f i  ~-fjj ~- . . . .  faa --fbb + ' "  " )T, ,  for i , j , . . ,  occupied and a, b . . . .  
unoccupied in the reference state. 

The standard procedure for derivation of the explicit CC equations, i.e., 
expressed in terms of individual amplitudes and integrals is to rewrite Eqs. 
(14a-14d) in diagrammatic form and then apply well-known rules [13] 
to translate them into algebraic language. We obtain for Eqs. (14a), (14b), 
(14c), and (14d) respectively 15, 38, 53, and 74 antisymmetrized diagrams. 
These diagrams are shown elsewhere [13, 11, 24], except for Eq. (14d) which 
are in Fig. 1, but in fact they are not really necessary here, since the same 
equations will be expressed in a much more compact, factorized form. In the 
case where we need a particular nonfactorized diagram for comparison pur- 
poses we will quote the respective diagram. 
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VVY -v VVV -~ VVVV --~ VVVV --~ WVV 
la Ib 2a 2b 2e 

WVV WVV ~-VVV ~-VVV Y-VVV ~-VVV 
2d 2e 3a 3b 5c 3d 

~Y/VVV x-y/VVV _o-VVVV ~VVVV Y/YVV 
4a 4b 4c 4d 4e 

Y/VVV LCYVV LdVVV V__Y-Y_V V_V-KY 
4f  4g 4h 50 5b 

V_Y-Y__V V~VV V_~VV V_~VV V_~VV 
5c 6(] 6b 6c 6d 

V_~-VV V_~VV "~VV V_~VV "UVV 
6e 6 f  6g 6h 6i 

V3YVV cWVVV cWVVV ~J~/VV '@S,/VV 
6j  7a 7b 7c 7d 

~YVV V_WoW V_~oVV ~ 
7e 7 f  7g 8a Bb 

VVWV VVYCV VVYCV VV~Y 
8c 9a 9b 9c 9d 

VVV~-~ VVVY-o V V ~  V V ~  V V ~  
IOa lOb IOc IOd IOe 

~tU-V__V d__V-W X_~-V__.V X_W__V ~-V~VV 
Ila l ib IIc lid J2a 

~-V~VV ~ V V  XX£Y ~ YM/VV 
12b 12c 12d 12 e 12f 

Y/VW_V Y/--V-W__V ~V-X_V Y/-V'd_V ~-WVV 
12g 12h 12i 12j 13a 

'd-~VV V__~,~ V_W-d__V V_W-'dY V__~-d__V 
13b 14a 14b 14c 15a 

V ~ V  ~ V V  ~ V V  
IBb 15c 15d 

Fig. i.  All antisymmetrized diagrams that contribute to T 4 in the CCSDTQ equations 
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5. Factorization of the CCSDTQ equations 

The diagrammatic equations corresponding to Eqs. (14a-14d) as shown in Fig. 
1 for T 4 contain a very large number of terms. Programming them one by one 
is impractical; and the necessary computational effort would be unrealistic even 
in a situation where each of the diagrams is computed at modest cost. Obviously, 
each diagram is unique as a whole entity, many of them, though, are constructed 
of similar fragments which can be evaluated using the same program. The 
purpose of this section is to reformulate the coupled cluster equations in such a 
way that all the common pieces could be factored, computed only once, and then 
substituted into different places. This procedure is possible due to the fact that 
coupled cluster diagrams are in fact "denominator-less." By this we mean that 
the denominator is implicitly included in the vertex which avoids assigning 
denominators to each diagram like we do in the case of MBPT diagrams. This 
enables us to sum over all internal lines belonging to one T vertex independently 
of the other T vertices. This maneuver is applicable obviously only to nonlinear 
terms, i.e., to those in which an F N o r  W N vertex is connected with more than 
one T vertex. Our ultimate goal is to rewrite the CC equations in such a way that 
only linear terms with redefined vertices are retained in each equation. Thus in 
each nonlinear term we retain one t amplitude, usually (but not always) that 
corresponding to the highest excitation, whereas the others are absorbed in 

a generalized vertex. For instance, we may replace the diagram \ /  \ T - ~  
L____7 _U. t 

w i t h / / / / ' ~  where the new vertex ~ may be expressed graphically as: 
L____Y / 

Although the original diagram, having three internal and four external lines, 
requires an n3N 4 step, after replacement, it requires two steps, one of nZN 3 and 
the other nZN 2 which is highly desirable, in fact, essential, computationally. This 
procedure is exploited to some degree in any computer implementation of the 
coupled cluster equations. However, the factorization of the CC diagrams has 
been introduced'independently, and there has been less attempt to approach the 
problem globally in the context of a more elaborate coupled cluster method like 
CCSDTQ. In this section we are going to present the maximum possible 
factorization of the CCSDTQ equations. Total factorization means that all the 
nonlinear terms shouM not explicitly appear in the final factorized equation. In other 
words instead of the 15, 38, 53 diagrams shown in Ref. [13] plus the additional 
T4 into T2 and/'3 contributions and the 74 T4 diagrams in Fig. 1, we obtain the 
8, 12, 10, and 11 diagrams presented in Figs. 2a to 2d, respectively. These are 
expressed in algebraic form in Table 1, at the expense of the introduction of new 
dressed fiN and 1~ N vertices. The real computational advantage lies in the fact that 
(i) the newly introduced vertices are in most cases the same for all the equations 
and (ii) their evaluation is in most cases straightforward and suited to convenient 
supercomputer oriented matrix products. 

Furthermore, the introduced intermediates, presented in Fig. 3, are in most 
cases complete. For diagrams numbers 1 to 10, their form does not depend on 
the truncation of T. Hence, they will not change if we go beyond the SDTQ 
approximation. In the context of what has been said in Sect. 3 about the 
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Table 1. Coupled cluster equations for SDTQ model in algebraic from" 

395 

--  ½<ran Ilei > t ~  + <ran Ilef>t~",i 

a b  a b  "" b a e  ", j a b  ! v * a b l e f  D U t o - <abl[tj> + P ( a b ) z ~ t ( i  - P( t j )Zmt i . , ,  ~ b  q -  Z e m t m U  q -  2 Z e f  " i j  

1 ij a b  • ,  ib a e  " t a b j  e tnijb a + z Z , . . t m .  - P ( a b ) ( t J ) L . , j .  v + P(tJ)Z~ t i  - P ( a b ) z m  t~,. 

I . a e f b  ! " i e a b  1 e f a b  + 2 P ( a b ) Z / ~ m t m  u - -  i P ( t j ) Z . , , ~ e t . ~ . / +  a ( m n  tlef>t,..u 
o a b c  ~ a b c  __  D (  I ~ l C ~ , c  ~ a b e  " k a b e  ijk " gik --  --~c ~ J * ~ "  #k - -  P ( k  /tJ ) Z m t  um + L ~  U~be,,i+k + 21P(c / a b ) x ~ f  t g ~ .  

1 p • • ij a b e  • " ib a e c  "" b c k  a e  + 2  ( k / t J ) Z , . . t m . k  - -  e ( t / j k ) ( b / a c ) z . , ~ t , ~ j k  + P(k]z) ) (a]bc . )z~  t U 

_ p( i / jk)(c /ab)z~,~k~t}~ + 1  . eft., 1 • • i e ~ ,  i P ( a / b c ) z ~fm t mijk - 2 P ( t / j k  ) z , . ~ t  ,,,,,j k 

a b e d  a b c d _  d a b e e  "" I a b c d  1 a b  e f c d  D ijkt t ijkt --  P ( d / a b c ) z ~  t ukl - P ( l  / t Jk )Zmt  ijkm + 5 P ( a b  / c d ) z e f  t #kt 

1 .* a b e d  ' • ib a e c d  ", c d l  a b e  + ~ P ( z j / k l ) t m . k t  --  P ( t / j k l ) ( b / a c d ) Z m e t . , / k +  + P ( a b / c d ) ( t J k / l ) z ~  tok 

- e(abc/d)(ij/kl)Zk,(at~" + P(a/bcd)(ij /kt)z~ka~t~ ~ - e(ab/cd)( i / jk t)  

~jckdf  a b  " ~ k e l d  a b e  I " . t j k d l  a b e  × Z,~ te.  , - -  P ( a b / c d ) ( t j / k t ) z  .... to," + 2 P ( a b c / d ) ( t / j k l ) z m .  t~m ~ 

a Permutation symbols are the same as in Refs. [7, 24]. P ( a b / c d )  ( i jk[1)  means that in addition to the 
identity permutation, all possible products involving permutations of  a and b; c and d, a n d / j  and k 
are allowed 

structure of the effective hamiltonian, it is not very difficult to observe that they 
correspond to different/71 of the /7  operator• In Fig. 3 we identify diagram 1 as 
t7 °, diagrams 2 and 3 as/71 ; diagram 6 as/722 etc. Thus the one-body part o f / 7  
may be expressed as the sum of the diagrams: 

/-7(1) = I1  + 1 2 + 1 3  (15) 

where Ik  corresponds to intermediate diagram no. k in Fig. 3. This means that 
when using this total factorization scheme we have obtained as a byproduct an 
expansion for the low rank components of /t. Now we will write the CC 
equations within a given model in terms o f / 7  type intermediates. 

In the T1 equation we have seven nonlinear diagrams corresponding to four 
nonlinear terms in Eq. (14a). They are all accounted for by introducing one-body 

intermediates, numbered 1, 2, and 3a in Fig. 3. The first two vertices, i . e . , / \  
1 / \  
% , are the same for all the equations considered, i.e., they are and 
! 

complete, the third one, I3a, ~ , is incomplete and must be augmented by 

one more diagram when going to higher (than one) rank equations. Using that 
vertex in its complete form, i.e., 13 instead of I3a, in the 7"1 equation would 
result in overcounting some diagrams. Now using the R based intermediates we 
may write the T 1 equation corresponding to Eq. (14a) as: 

<~b~l[H 0, T][~> = < ~  ][/7'(1) + WN, T]I~> (16) 
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I I  [ " "  = + V +  V +  V V  

12 I = + + + 

V V A-- 0 
~3 A = vv 

,4 H=V -- i;-i  v 
Fig. 3. The intermediates introduced in CCSDTQ model with total factorization of nonlinear terms 

where the prime denotes that H is not complete, since it includes the I3a (Z]) 
contribution instead of the 13 (Z}) one. The commutator ensures that all 
unlinked or disconnected diagrams are eliminated. All the intermediates used in 
the T 1 equation are computed with no higher than an n2N 3 scale factor. The 
same factor occurs for all the diagrams occurring in the factorized T1 equation, 
see Fig. la, except for the last one which requires a n  n Z N  4 scheme. 

In Fig. lb the factorized form for the T2 equation is shown. Out of twelve 
diagrams contributing to this equation, two, i.e., the first and last one, are in 
their original forms, i.e., they engage nondressed vertices: the first one because 
this is just a WN operator and the last one because we cannot dress the WN 
vertex containing exclusively annihilation operators. All the 38 original diagrams 
corresponding to Eq. (14b) are reproduced when we replace the dressed vertices 
in Fig. 2b by their diagrammatic components as given in Fig. 3. In addition to 
H(1) we introduce the/?(2) component o f / 7  as: 

/?(2) = I 4 + I 5 + I 6 + I 7 + I 8 + I 9 + I 1 0  (17) 

Equivalently, we could express/?(2) in terms of algebraic quantities defined in 
Table 2, Eqs. (4-10). Similarly as in the case of the TI equation, in order to 
prevent overcounting, some of the newly defined vertices- three in this case: 

~ l ,  ~ z z V  and ~___1/ - should  be used but not in their final form. 

The T 2 equation may now be expressed as 

<~gb [[H0, r l ]~> = <'P~ liB(l) +/?'(2),  r l l~>  (18) 

where again the prime refers to the situation that not all of the components of 
are in their complete form. All the intermediates occurring in the T 2 equation 

are obtained with n 2N4 and lower scaling factors. The same factor occurs in the 
case of diagrams contributing to the T2 equation, in Fig. 2b, with the exception 
of the last three. The latter represent contributions from T3 and T4 cluster 
operators and are computed via n3N 4 and n4N 4 schemes, respectively. 

The third type of equation, i.e. T3, is presented in a factorized form in Fig. 
2c. All of the new ff'N vertices are used in their full form except for that carrying 
number I10 in Fig. 3, 

< d'jabc / ~ a b c  ~',jk [[Ho, Tl[cb> = ,,~,.;, 1[/?(I+)/?"(2), T]lq~> (19) 

where the double prime means that the I10 diagram is replaced with II0a. 
Again most of the intermediates are computed with nZN 4 and lower factors. 
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Table 2. Algebraic expression for the intermediates defined in Fig. 2 

Xea =f~. + <im Ilae>t~ (1) 

Z~, = f Z  + (am Ilbe>t~ - Xmbt~, -- ½(mn [[eb ) t ~ ,  (2) 

g~ = Z7 + Zi, t;  (3) 

Z'/ =J~ + (irn Ilje>Um + ½<millef)t ~ (3a) 

. . . . .  ½(millbc>t~, )~,i - Zh~ (4) 

x'~., = <,~ellbc > - ½<mil lbc ) t~.  (4a) 
k __  Ik  1 , .  e Zi~a - Z~a + sQJllea ) tk  (5) 

Z~k = (zJllka) + ½<~illea)t~ (5a) 

Xcda6 = Z,.d'ab + ½(mnllcd) t~b (6) 

x',~ ~ = < ab  I lcd>÷ P(ab)g',~,,t b (6a) 
k l  __  " pk e 

x ~  - <,J Ilkt> + P(k l )Z i j e  t , + l ( i j  I l e f ) t~  (7) 

X~g = ZTb a + ( im [[eb >ty~ (8) 

ZtJfb a = (in Iljb > - (ira Iljb >t~ + Xg,it7 (8a) 

g"Sb~ = (Ca Iljb > - (ira Iljb >t~, + g~,ty (8b) 

z~ hi= z'fl b~ + (ab [[ce)t~. - P ( a b ) g ~ t  b - Z.,~t~bi 

, ab _ l ( m  n Ilce>ta~ L (9) - -  P(ab)X~mt Z + Z.. ,~tm. 

Z'fl, b~ = ( ab [lei ) + ½ ( ab Ilce ) t7 - P(ab ) z ~  t~  (9a) 

g~/¢'~ = Z "jk" ÷Ziet;ff (10) 

gTjk, = )~1,,~ _ ½(im [Ijk )t~. + P(jk)g'{e~t~ 

+ ± ~  ,ef • k ea + ½(im[[f) t j ,~k (10a) 2.~fe*'jk -- P(Jk)2(,nietj,,, e efa 

Z; jl'' = ( ia  IlJk> - 1 ( i n  IlJk )tam (10b) 
l a b i c j  1 a b  e c  b a e c  "" i a b c  a e b c  Zd = 5P(c/ab)gdet O. - ZeamP(b/ac)tmlj + P(tJ)Xnmdtmn j -- (mn  [[de>tmn/] (11) 

z q a k b l  1 • j k  a S  • j a  e b  i = --sP(l/J~z))~imtmt q- P(a l ) ) ( j /k l ) )~ t~ t  - 

+ P(ab)x~e~t~ • k e a b  ÷ ( i g g l  Ilef)ty~ (12) - -  P(k / j l ) z ~  t j,,,z 

Z ~  a c k  = - ( i m l l e b  >ty~ (13) 

xff" '  = <t~ [ [ e f ) t~  (14) 

Only two of them require higher, i.e., "an n 3 N  4 scheme and those are dis- 
played as the last contributions to the wiggly vertices in Fig. 3, diagrams 9 and 
10. 

More demanding computationaUy are the diagrams present in the factorized 
T 3 equation, see Fig. 2c. As in the previous cases only diagrams formally linear 
in T occur and in most of them these are T3 vertices. The presence of T3 
amplitudes usually invokes a higher scaling factor and this is the case here. The 
computationally simplest diagrams correspond to an n 3 N  4 scheme, and are those 
involving the 7"2 vertex or T 3 combined with a one-body vertex. The others like 
those combining a T 3 amplitude with a two-body vertex or a T4 amplitude with 
a one-body vertex are of n 4 N  4 dependence. Finally the toughest ones are those 
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expressing the T4 to T3 contribution via a two-body vertex which scales as n 4 N  5. 
Bearing in mind that most of the intermediates have already been computed for 
lower rank equations the real effort required to code the T3 equation is 
programming the diagrams listed in Fig. 2c. From the programmer point of view 
this is not that demanding a task once the fie N vertices are available. Moreover, 
we observe that in such a formulation of the CC method in which the real 
computational effort is expended when computing the linear terms, the inclusion 
of the nonlinear terms has a negligible effect on the cost of computations and 
also is connected with minimum additional programming effort. 

The same situation to a certain degree is repeated in the T4 equation. The T4 
equation, presented in factorized form in Fig. 2d contains eleven terms and for 
their evaluation we need eleven dressed vertices. Seven of them: 1 2 - 1 6 ,  19, and 
I10 are those already defined for lower rank CC equations, and the only 
modification is that we used I10 instead of I10a, but this is a matter of inclusion 
of only one more diagram which has a n  r t 2 N  3 scaling factor. This means that in 
the current equation we will use complete one- and two-body components of H. 
In addition we introduce four additional intermediates, I11 to I14, as compo- 
nents of/7(3). Now the T4 equation may be written as: 

,boa ,bca - /7(2)  /7'(3), ~ )  (20) (~/jk] I[n0, Z l l l~)  : (~ijkl I[n(1) + + Zll 
where the three-body part o f / 7  is expressed as: 

/7'(3) = I l l  + 112 + 113 + 114 (21) 

Thus the new vertex, no. 11 in Fig. 3, is obtained as a contribution from nine 
intermediate diagrams. That iffitself would be a difficult problem, however, we 
may facilitate it by using in its evaluation the other wiggly vertices defined 
previously. Due to that the number of contributions to be accounted for is 
reduced to four, see Fig. 3. Analogously, the wiggly vertex no. 12 in Fig. 3, being 
a sum of fourteen dashed-vertex diagrams, can be computed as a sum of five 
intermediates with previously defined vertices. This procedure for using the lower 
rank intermediates in the evaluation of their higher rank counterparts which we 
call the Recursive Generation of Intermediates (RGI), is a beneficial characteris- 
tic of the present approach and brings about a remarkable reduction both in the 
programmer's and the computer's effort. The two wiggly vertices under consider- 
ation require for their evaluation much more time than all the previous ones. The 
intermediates contributing to vertex no. 11 are computed within an n3N4(1), 
naN4(2), and haNS(l) scheme, where the numbers in parenthesis refer to the 
number of intermediates. Similarly, for the vertex no. 12 we have: n3N4(2), 
naN4(2), naNS(1). The last two vertices in Fig. 2 represent one intermediate in 
each case and they are evaluated with an n 4 N  4 dependence. Having created the 
necessary intermediates we may turn to the evaluation of the diagrams contribut- 
ing to the T4 equation, see Fig. 2d. Out of eleven diagrams six represent an n a N  5 
problem and the remaining five - an n 4 N  6 problem. 

6. Vectorization of the coupled duster code 

In order to fully exploit the currently existing computational facilities one needs 
to formulate the computational method in such a way that it could be easily 
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vectorized. In other words, we may benefit from vector architecture or array 
processors by rewriting the algorithm in terms of matrix multiplications. It is 
straightforward to see that the factorization of the coupled cluster equations 
introduced in the previous section is ideally suited for vectorization. This is due 
to the fact that each diagrammatic term occurring either in the expression for 
intermediates presented in Fig. 3 or for the factorized coupled cluster equations 
in Fig. 2, is ,composed of two vertices only: the (modified) interaction vertex FN 
or WN and the cluster vertex T. Hence each diagrammatic contribution is 
represented by a product of two quantities, each of them being a multidimen- 
sional array. It is obvious that this may be treated as a product of two matrices. 
Since this can be done for all diagrams appearing in Figs. 2 and 3, the full 
vectorization within the present formalism is easy to achieve. 

Let us investigate the process of vectorization of the coupled cluster code 
using several examples. We begin with the simple diagram expressing a contribu- 
tion into the t a amplitude from the T1 cluster via the one-body potential. This is 

I 
expressed diagrammatically as _ ~  which may be written algebraically as: 

t• = Z f a e  Oe (22) 
e 

where the t and o symbols refer to the new and old t amplitudes, respectively. It 
is obvious that Eq. (22) may be considered as a product of two matrices: F and 
O1: 

TI(A, I) = ~ F(A, E) • OI(E, I) (23) 
E 

where the meaning of symbols is obvious. Using matrix symbols: 

T1 = FP • O 1 (24) 

where FP denotes a matrix of one-body particle-particle intermediates. We 
assume that the general matrix multiplication routine called MATMUL works in 
such a way that the product of two matrices A and B: 

C = A • B (25) 

of dimensions A(NA, M) and B(M, NB) gives matrix C of dimension C(NA, NB) 
a s  

MATMUL(A, B, C, NA, NB, M) (26) 

Using the above procedure we may express Eqs. (22-24) in terms of the 
MATMUL routine as: 

MATMUL(FP, 0 1, T1, NP, NH, NP) (27) 

where NH, NP refer to the number of hole and particle (occupied and virtual) 
levels in the system, respectively. 

Using the same scheme we may express in terms of matrix multiplication a 

coming from the diagram ~ - : :  as: contribution 
. . . 2 / _ _  

TI(A, I) = ~ O l(a, M) * FH(M, I) (28) 
M 
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or using the MATMUL routine as: 

MATMUL(O1, FH, T1, NP, NH, NH) (29) 

A more complicated situation occurs for cases involving double and higher 
excitation clusters aswell as two-body intermediates. In these cases we encounter 
higher than two-dimensional arrays. Hence the first step will be to reorganize 
them into two-dimensional ones by appropriate mapping of the indices. We will 

this situation for the example of the diagram ~/ (~ --v with the analyze 
K.....k/ 

corresponding algebraic expression: 

t~ b = Z °a~' (mb lej) (30) 
m e  

Each of the entities in the last formula must be expressed as a two-dimensional 
array and by the following transformation of the indices: i, a ~ K; j, b ~ L; and 
m , e ~ P  we obtain the mapping t~b~T2(K,L); o~e~O2(K,P); and 
(mblei) ~ V(P, L). Now the formula (30) can be written as: 

T2(K, L) = ~ 02(K, P) • V(P, L) (31) 
P 

where K, L, and P run over NH * NP levels. Using the MATMUL routine the 
last expression may be replaced with: 

MATMUL( 02, V, T2, NHP, NHP, NHP) (32) 
\ 

where NHP = NH • NP. 
A closer examination of the above procedure tells us that the reorganization 

of the four-dimensional arrays into two-dimensional ones is not necessary 
provided a correct ordering of the involved indices is arranged. If the matrices 
corresponding to the amplitudes t~ b are arranged as T2(I, A, J, B), o7 e as 
02(1, A, M, E) and the integrals (mb [ej) are stored as V(M, E, J, B) then the 
operation expressed in Eq. (32) still provides the correct contribution to the 
amplitude t~. b. An analogous situation occurs for other diagrams. Let us consider 
as a next example a contribution to the intermediate coming from the diagram 
according to the formula: 

VHPP(1, A, B, C) = ~ VHP(1, A, B, M) • TI(M, C) (33) 
m 

Using the MATMUL routine the last formula can be written as: 

MA TMUL( VHP, T1, VHPP, NHPP, NP, NH) (34) 

where NHPP = NH * NP * NP. 
We note that the t~ amplitudes occurring in Eq. (33, 34) are rearranged 

differently than those employed in Eqs. (27) and (29), since in the former the 
first index runs over hole levels whereas the latter runs over particle ones. We 
could possibly exchange the order of matrices in Eq. (34) to retain the struc- 
ture of the T1 array; however, this would affect the order of indices in the 
VHHP intermediates. Thus in order to express a given contribution in terms 
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of a matrix product we must be aware of the fact that in many cases the 
matrices have to be transposed. This is a trivial procedure for the case of a 
two-dimensional square matrix. For the multidimensional array exchanging a 
pair or more of indices still can be easily handled on condition that the 
involved indices belong to the dimensions of the same length. It should be 
noted that the transposition step involves only one matrix at a time, be it 
amplitudes or an intermediate matrix, and because of that this step is usually 
of a much lower n scheme than the actual diagrammatic contribution which is 
a product of two matrices. It should be mentioned that some computers are 
equipped with efficient SCATTER/GATHER capabilities exploited in matrix 
multiplication which allows avoiding in most cases transposition of the in- 
volved matrices [25]. 

On the basis of the above examples we may now give general rules stating 
how to express a contribution from a given diagram directly in terms of a 
MATMUL subroutine. 

Let us consider a general diagrammatic contribution to the t amplitude 
expressed diagrammatically as: 

v_...,v ' -v = ( 3 5 )  

where the 1.h.s. vertex and lower r.h.s, vertex corresponds to general new and 
old t amplitudes, T and O, respectively, whereas the upper vertex represents a 
graphical picture of the general intermediate I,V. We assume that all the lines 
attached to the intermediate vertex from below are connected with the 0 
vertex and they become internal lines, i.e., those over which the actual sum- 
mation is performed. On the other hand, all the lines connected to the inter- 
mediate from the top ° as well as the remaining lines in the lower (i.e. O) 
vertex constitute the open lines and their number exactly matches the total 
number of lines in the 1.h.s. vertex. 

The contribution from the general diagram presented above may be ex- 
pressed with the help of the MATMUL routine as: 

M A T M U L ( O ,  V, T, N E T ,  N E V ,  N I )  (36) 

o r  a s  

where 

M A T M U L ( V ,  O, T, N E V ,  N E T ,  N I )  (37) 

N E T  = L P E T  * N P  * L H E T  * N H  

N E V  = L P E V  * N P  * L H E V  * N H  

N I  = L P I T  * N P  * L H I T  * N H  

and L P E T  ( L H E T ) ,  L P E V  ( L H E V )  denote a number of external particle (hole) 
lines connected with 0 and V vertices, respectively and L P I T  ( L H I T )  refers to 
the number of internal particle (hole) lines. 
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Eq. (39). In this i?o j~b 
- -~r~f as 

be now called: 

Each of  the two expressions given in Eqs. (36, 37) refer to the different 
situations: Eq. (36) corresponds to the product T = O • V whereas the other one, 
Eq. (37), represents the product T = V • O. Which of  the two expressions will be 
actually chosen depends on the current order of  indices. 

For  the case represented by Eq. (36) indices must appear in the following order: 

T vertex - labels on external lines, labels on internal lines 

V vertex - labels on internal lines, labels on external lines 

O vertex - labels on lines corresponding to those on the T vertex; labels on lines 
corresponding to those on the V vertex. 

If  the given contribution is evaluated according to Eq.  (37) the order of  two 
groups of  labels on each vertex is reversed. It must be stressed that the order of  
labels on internal lines on both vertices must be matching. Similarly, the order of  
labels on the T vertex strictly follows the order of open lines on the O and V 
vertices. 

The following example will help to clarify the above rules. Let us evaluate the 
contribution to the t~ b amplitude coming from the W N T  3 term via the diagram 

- . The routine M A T M U L  will be called with the following 
f 

parameters: 

MATMUL(03,  VHPP, T2, NET, NEV, NI) (38) 

where NET = NH • NH • NP; NEV = NP; NI  = NH • NP * NP. The order of  
the indices within each of the involved arrays, i.e. 03 ,  VHPP and T2 can be, e.g. 
as follows: 03(1, J, A, E, F, M), VHPP(E, F, M, B), T2(I, J, A, B). 

We may change the order within the first three indices of  0 3  (accompanied 
by the matching change within the first three indices of  T2) as well as the order 
within the last three indices of  03  (accompanied by the matching reordering of  
the first three indices within the VHHP intermediate). 

We may as well invoke the M A T M U L  routine according to the pattern of 
case we have to relabel the lines in the diagram 

follows: 4"~--  . The respective routine will 
mUe 

MATMUL(VHPP, 03, T2, NEV, NET, NI) (39) 

where the last three parameters have the same values as in Eq. (38). The order 
of  indices within each of  the arrays is as follows: 

VHPP(A, E, F, M), 03(E, F, M, B, 1, J), T2(A, B, I, J )  

Similarly as before we may change the order within certain groups of  indices on 
condition that the changes will be identical within each pair of  the concerned arrays. 

Which of  the two possible calls of  M A T M U L  routine will actually be 
performed depend s on the current structure of the arrays. Generally, we will 
choose that option which requires less index reordering in the matrices to be 
multiplied. 
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The last examples illustrate clearly the use of general rules which allow for 
the mnemonic assignment of the MATMUL routine equipped with appropriate 
parameters for each coupled cluster diagram. 

So far we have not paid attention to' such factors connected with each of the 
spin-adapted Goldstone diagrams that  derive from the antisymmetrized dia- 
grams, such as sign, coefficients due to presence of the closed loops in the 
diagrams (21, l = number of loops) and coefficients due to the presence of a 
symmetry plane (1/2). In fact, these coefficients do not affect a general vectoriza- 
tion scheme since they can be accounted for in a different way. For instance, in 
the diagram evaluated via Eq. (38) a factor of two must be included due to the 
presence of the closed loop. To account for it we need to multiply one of the 
invoNed arrays by two before invoking the MATMUL routine. Usually we do 
this for whichever of the two matrices is smaller. In the present case this will be 
the VHPP matrix. This is a very fast step compared to the matrix multiplication: 
N H .  NP 3 versus N H 3 .  NP  4. If the same VHPP array is to be used in the 
evaluation of the next diagram which come with a different factor, we must 
remultiply VHPP by a suitable coefficient. We may still reduce the time needed 
for preparing the arrays for the actual evaluation of the diagram (i.e., premulti- 
plication by some coefficient, multidimensional transposition) by simply collect- 
ing together all those diagrams which require the requisite type of input ari:ays. 

For convenience, we have assumed the situation that all the arrays involved 
in the evaluation of the given diagram can be kept in the physical memory of the 
computer. Of course, this is unrealistic for CC models involving T3 and /'4 
dusters or for large basis sets, where the integrals, particularly the 4-virtual 
orbital case (ab I cd), are excessive. Consequently, despite the availability of 
computers with large core memory, IO is inevitable for large basis examples and 
must be handled intelligently to be balanced appropriately against the CPU time. 
Obviously, the way one handles this problem is by restricting some indices while 
processing others. For the n02n4virt step: 

t'i~ = E (ab Ilcd)t~ a 
c > d  

we will typically sort integrals to read from external storage all cd for a given ab 
choice, and perhaps with a one (or several) choices of i , j  as required by memory 
constraints. 

~t is obvious from the above discussion that if we retain the proposed 
transparent structure of the CC equations and code them using RGI strategy we 
can easily express the entire complicated program in terms of one elementary 
operation: the  matrix multiplication. Then we may focus attention on all the 
steps involving larger matrices which become a bottleneck for the efficiency of 
the program while leaving the other steps unaffected. The construction of the 
whole program from independent pieces is in practice a very useful property. The 
further addition of Abelian symmetry to an intermediate driven structure for 
CCSD has paid enormous dividends in efficiency [26]. 

7. Conclusions 

We have presented a very compact form of the SDTQ coupled cluster equations. 
The final computational equations require only terms that are formally linear, 
since the nonlinear ones are included by a suitable definition of intermediates. 
The latter are calculated in a recursive manner which significantly reduces 
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the number of terms to be programmed. All the terms occurring either in the 
evaluation of the intermediates or in calculating a contribution to the T 
amplitude are computed as a product of two quantities: the/~N and ff'N vertex 
and a T amplitude. This means that the entire computational scheme is com- 
posed of steps computed as a product of two (super) matrices. This feature of the 
current approach is valuable from the point of view of possible vectorization of 
the program. In addition, the whole construction of the method is very straight- 
forward and can be easily implemented. Full CCSDTQ results are reported 
elsewhere [27]. The further refinement of the program is reduced to work on 
large matrix multiplication routines. 
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